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In this paper, the authors propose to codesign cyber and physical components of CPSs in
a holistic environment. They present a number of codesign approaches in modeling,
simulation, synthesis, verification, and validation. They also discuss open challenges in
CPS codesign and possible future directions for addressing them.

By QI ZHU

ABSTRACT | Cyber-physical system (CPS) analysis and design
are challenging due to the intrinsic heterogeneity of those sys-
tems. Today, CPSs are often designed by leveraging existing
solutions and by adding cyber components to an existing phys-
ical system, thus decomposing the design into two separate
phases. In this paper, we argue that the codesign of the cyber
and physical components would expose solutions that are bet-
ter under all aspects, such as safety, efficiency, security, per-
formance, reliability, fault tolerance, and extensibility. To do so,
automated codesign tools are a necessity due to the complex-
ity of the problems at hand. In the paper, we will discuss the
key needs and challenges in developing modeling, simulation,
synthesis, validation, and verification tools for CPS codesign,
present promising codesign approaches from our teams and
others, and point out where additional research is needed.

KEYWORDS | Codesign; cyber-physical systems (CPSs); design
automation; modeling; synthesis; verification

I. INTRODUCTION

Cyber—physical systems (CPSs) such as autonomous vehi-
cles, industrial robots, medical devices, smart buildings,
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and smart infrastructures promise substantial economic
and societal benefits. The design of these systems, how-
ever, faces serious challenges from the fast increase of
system scale and complexity, the close interaction with
dynamic physical processes, the adoption of advanced
and distributed embedded platforms, and the stringent
requirements on a variety of design metrics such as perfor-
mance, safety, security, fault tolerance, extensibility, energy
consumption, and cost.

A key principal in tackling these challenges is to
codesign various cyber and physical components of the
system, i.e., to model, simulate, synthesize, and validate
the sensing, control, computation, and communication
algorithms, the software and hardware implementation
platform, the mechanical components and processes,
and the surrounding physical environment and human
activities in a holistic environment. In fact, the term
“cyber—physical systems” itself shows a unified view
of heterogeneous cyber and physical components, and
emphasizes the importance of analyzing their interactions
to achieve better system designs.

In current practice, however, CPSs are still designed
in isolated stages that address individual elements. For
instance, control design is carried out with modeling of
the physical processes but usually without consideration
of the cyber platform. As control performance and stability
significantly depend on the reliability and timing behavior
of the underlying computation and communication, such
isolation of control design and cyber platform implementa-
tion could lead to long production cycles, inferior systems
or even infeasible designs.

To facilitate codesign of CPSs, new methodologies and
tools are greatly needed. These tools should be able
to capture the key interactions among various cyber
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and physical components, and to explore the entire
design space in a holistic, quantitative, and automated
fashion.

In the rest of the paper, we will discuss the needs
and challenges for CPS codesign, and present promising
codesign methodologies and tools. We organize the paper
based on different design automation technology cate-
gories: modeling and simulation (Section II), synthesis
(Section III), and verification and validation (Section IV).
As we will see, tools in each of these categories are essen-
tial to achieve successful codesign of CPSs and ultimately
effective and reliable systems.

II. MODELING AND SIMULATION

Modeling and simulation tools set the foundation for
codesigning CPSs. They enable designers to capture the
behavior of various cyber and physical components, specify
design requirements and objectives, evaluate and validate
design options based on simulations, and identify design
factors that are critical for synthesis and verification.

To facilitate codesign in CPSs, it is particularly important
that these tools provide the following capabilities.

e Modeling heterogeneous components in a common
environment: Compared to traditional embedded
systems, CPSs often involve components that have
heterogeneous behavior and could be captured
with different models of computation (MoCs). For
instance, there are intrinsic differences between dis-
crete cyber components and continuous physical
processes. The first step for codesign is to enable
modeling heterogeneity in a common environment.
The component models do not have to be captured
in the same language, but their interfaces should be
well defined with clear syntax and semantics.

e Cosimulating heterogeneous components: Simulation
is an important capability for reasoning about CPS
behavior. It requires cosimulation of components that
have different semantics, abstraction levels, and time
scales. To enable such cosimulation, clear execution
semantics have to be defined at the component inter-
faces and at the entire system level. Monitors and
rollback mechanisms may be introduced to facilitate
the simulation.

e Separating design concerns: To effectively and
efficiently codesign multiple design components (e.g.,
a control algorithm and its embedded implementa-
tion), clearly separating their models and formaliz-
ing the interfaces is important. This separation in
modeling provides the benefit of 1) exploring design
alternatives of one component while reusing other
components’ designs; and of 2) identifying the key
factors that affect the interactions among components
and leveraging these factors in codesign.

In this section, we present several design environments

that provide these capabilities, with particular attention to
the Berkeley tools.

A. Metropolis and Metro II

The principles of heterogeneous modeling, cosimula-
tion, and separation of concerns had been well established
in the paradigm of platform-based design [1], [2], and
realized in the design environment Metropolis [3], [4].
Specifically, Metropolis supports various common MoCs
(e.g., dataflow, state machine, discrete event, and discrete
time) with a unified language, the Metropolis meta-model
(MMM). Heterogeneous components can be captured with
MMM and cosimulated through a SystemC based engine
[51, [6]. Furthermore, a key principle in Metropolis is
to separate the modeling of system functionality (i.e.,
what the system does) from the modeling of architec-
tural platform (i.e., how the system is implemented).
The separated functional model and architectural model,
both described in MMM along with design constraints,
are then brought together through a mapping process,
during which different platform implementation of the
functionality are explored. This separation also enables
function-architecture codesign, where different functional
designs or platform choices can be easily explored without
changing the other part’s model (while considering the
other part through mapping).

In Metro II [4], [7], [8], the second generation of
Metropolis, these principles facilitating codesign are fur-
ther strengthened. First, instead of requiring all compo-
nents to be captured in the same MMM language, Metro II
provides wrappers to support integrating and cosimulating
components that are described in different languages. This
is particularly important for CPSs, as components from
different domains often come with their own modeling
languages and simulation tools. Second, in addition to
the separation of functionality and architecture, Metro II
further separates the modeling of logical quantities (e.g.,
ordering of events) from the modeling of physical quanti-
ties (e.g., physical time and energy consumption), through
the concepts of schedulers and annotators. In Metropolis,
all quantities are modeled through quantity managers. The
clearer separation of logical and physical aspects in Metro
II helps analyzing the complex interactions among compo-
nents and identifying the critical factors for codesign.

There are a number of case studies that have demon-
strated the effectiveness of using Metropolis and Metro II
in system codesign, from more traditional embedded sys-
tems in multimedia [9], telecommunication [10] and
automotive [11] domains, to CPSs in buildings [12]
and aircraft [13]. For instance, in building design
automation [4], [14], a controller model described in
Simulink [15] and a building plant model described in
Modelica [16] are integrated into Metro II, and cosimu-
lated with an architectural model for performance analysis
and communication network synthesis.

B. Ptolemy

The Ptolemy II framework [17] is another modeling and
simulation environment that facilities CPS codesign with
support for heterogeneity and separation of concerns. The
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framework supports a variety of MoCs, such as process net-
works, discrete event, dataflow, synchronous reactive and
continuous time, through the concept and implementation
of directors. Heterogeneous components that are described
with different MoCs can be integrated and cosimulated in a
hierarchical model with multiple directors. For instance, a
controller component governed by a synchronous dataflow
(SDF) director can be integrated with a plant model gov-
erned by a continuous-time (CT) director, and cosimulated
at the system level under a discrete event (DE) director.
The framework also develops domain-specific ontologies
for identifying misconnected components (e.g., because of
unit, semantic or transposition errors) to ensure correct
integration of heterogeneous components [18].

In Ptolemy II, different aspects of a system are orthog-
onalized based on aspect-oriented programming [19],
[20], which share similar ideas to quantity managers in
Metropolis. Furthermore, while the framework has mostly
focused on functional modeling, it provides the capability
for integrating and cosimulating architectural models. In
particular, the PTIDES [21], [22] programming model
enables clear separation of logical time in functional model
and physical time in architectural platform, and ensures
timing consistency when functionality and architecture are
mapped together (a lightweight microkernel PtidyOS is
presented in [23] to facilitate such mapping). The archi-
tectural models can be built within Ptolemy II as in [20],
or integrated from other tools as shown below in the
Metronomy project.

C. Metronomy

Leveraging the strength of Metro II and Ptolemy, the
integrated Metronomy framework provides heterogeneous
modeling and cosimulation capabilities to facilitate CPS
codesign, in particular for verifying system timing behavior
during design space exploration [13].

In Metronomy, the functional model is captured in
Ptolemy, while the architectural model is described in
Metro II, as shown in Fig. 1. At the system level, the
two models are integrated and cosimulated through a
CoSimDirector, which implements the Metro II execution
semantics as a Ptolemy director. The functional model may
further contain heterogeneous components—as shown in
the figure, a discrete controller model and a continuous
physical plant model are cosimulated with a customized
discrete event director CoSimDEDirector. On the other
hand, the Metro II architectural model can be simulated
with a SystemC simulation engine. During model integra-
tion, it is compiled with SystemC and Metro II libraries into
an executable, which is then cosimulated with the func-
tional model via interprocess communication (governed by
the CoSimDirector).

With Metronomy, control engineers or other domain
experts can leverage the plethora of MoCs in Ptolemy
to capture the functional design of the system. Soft-
ware/hardware engineers can leverage the flexibility and
expressiveness (as well as the libraries of schedulers and
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Fig. 1. Metronomy framework [13].

annotators) of Metro II to design the architectural plat-
form. System engineers can effectively integrate the two
aspects in a cosimulation environment for codesigning
various components and verifying the correctness and
performance of their designs.

In particular, Metronomy exploits the contract-based
design theory [24] to define an interface of timing con-
tracts between the functional model and the architectural
model. These contracts can be viewed as a set of timing
assumptions and guarantees that are agreed upon between
the domain experts who design the system functionality
and the software/hardware engineers who implement such
functionality on architectural platform. When conducting
design space exploration through cosimulation, timing
monitors can be implemented in Metronomy to check
whether these timing contracts are being satisfied and rule
out the infeasible designs.

In [13], Metronomy is applied to the design of two CPSs.
In an aircraft electric power system example, a timing
contract is set on the end-to-end latency (from sensing
to actuation) of a control loop in the system. Through
cosimulation of the controller and the implementation
platform, different bounds of the timing contract are eval-
uated with respect to their impact on system performance
and stability. The findings are then used to drive the code-
sign of controller and its implementation platform, e.g.,
whether a voltage protection mechanism should be added
to the controller design when the timing bound is loose, or
whether a faster communication bus should be employed
in the architectural platform when the bound is tight. In
another example of a printing press paper feed system,
the sampling period of the paper feed controller and the
operating frequency of the implementation processor are
codesigned with respect to system performance, also based
on cosimulation of the models and verification of the
timing contracts.

D. Other Frameworks

There are a number of other academic modeling,
simulation and design frameworks for embedded sys-
tems and CPSs, such as model-integrated computing
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(MIC) [25]-[28], OpenMETA [29], BIP [30]-[32], Com-
paan/Laura [33], Spade [34], Sesame [35], CAKE [36],
ForSyDe [37], MESH [38], Mescal [39], MILAN [40],
Giotto [41], CHARON [42], and a compositional real-time
scheduling framework [43]-[45] supported by the CARTS
tool [46] and the Real-Time Xen visualization platform
[47], [48]. There are also popular industrial tools such
as MATLAB Simulink [49] and SCADE suite [50], both of
which follow the model-based design paradigm [51]-[54].

These frameworks typically start the design with a func-
tional model capturing the system functionality, and then
refine it to software and hardware implementations. Some
frameworks also provide synthesis tools that explore the
design space. For instance, the MIC framework includes
a general modeling environment (GME) [55], [56] for
creating domain-specific models with a UML-based meta-
modeling language, a universal data model (UDM) [57]
for providing uniform access to the GME metamodels,
a graph rewriting and transformation (GReAT) tool [58]
for model transformation, and a domain-independent tool
DESERT [59]-[61] for generic constraint-based design
space exploration. The OpenMETA design automation tool
suite [29] provides a model integration platform for pre-
cise representation of semantic interfaces among modeling
domains and a tool integration platform for automated
design space exploration. The model integration platform
leverages GME, the model integration language CyPhyML
[62] and the formal specification language FORMULA 2.0
[63] to represent components, design spaces and designs,
cross-domain interactions, composition constraints, data
model interfaces, models of engineering process, and
model transformation. The tool integration platform fea-
tures the DESERT tool for synthesis, and also integrates
methods for formal verification, reliability analysis and
uncertainty quantification.

The behavior-interaction—priority (BIP) framework pro-
vides a rigorous model-based and component-based design
flow [30]. As a type of architecture description language
(ADL), BIP supports the construction of composite and
hierarchically structured components from atomic compo-
nents, and captures their behavior through layered applica-
tion of interactions and priorities. More specifically, it uses
the concept of connectors to specify interactions between
components (as synchronization constraints), and uses
priorities to filter possible interactions for further speci-
fying system behavior. The framework has been applied
for the modeling and verification of resource-constrained
Internet-of-Things (IoT) applications [64], [65]. Recently,
DesignBIP [66], a web-based graphical design studio, has
been developed to facilitate the specification of BIP mod-
els, code generation from the models, and integration with
a JavaBIP tool-set [67].

III. SYNTHESIS

Synthesis methods and tools explore a vast and
heterogeneous design space, including the sensing,
control, computation, and communication algorithms at

the functional level, the software and hardware implemen-
tation platform, the mechanical components that affect the
physical environment, and the human interaction inter-
faces. The exploration process tries to find feasible or even
optimal designs with respect to objectives and constraints
on a variety of system metrics, such as performance, safety,
security, fault tolerance, reliability, extensibility, energy
consumption, and monetary cost.

The synthesis of CPSs has been facing several major

challenges.

e The functional complexity of system cyber compo-
nents is rapidly growing, particularly due to the devel-
opment of intelligent features and growing system
scale. For instance, with the advancement of active
safety features, such as those enabling autonomous
driving and advanced driver-assistance systems
(ADAS), the complexity of automotive electronic sys-
tems has increased drastically in the last two decades.
Modern vehicles feature about 10-100 million lines of
code (up from around 1 million in 2000), thousands
of software functions, tens of thousands of functional
requirements, and up to 25 GB of data for process-
ing per hour [68]-[70]. Software and electronics
were featured in 90% of automotive innovations in
2012, and will continue play a dominant role moving
forward [71].

e The architectural platform is becoming more distrib-
uted and networked for many CPSs, and using more
advanced and complex components. In the automo-
tive domain, the number of electronic control units
(ECUs) in luxury cars has more than doubled from
under 50 to more than 100 in the past decade [72],
and the ECUs are evolving from simple microcon-
trollers to multicore CPUs with graphics units and
hardware accelerators. There is also a fundamental
shift from the traditional federated architecture to the
integrated architecture, where one function can be
distributed over multiple ECUs and multiple functions
can be supported on one ECU [73]. This trend leads
to significantly more sharing and contention among
software functions over the architectural platform,
and increases design complexity [74].

e There are strong interdependencies among various
components in CPSs. For instance, how effective a
control design may affect the physical process sig-
nificantly depends on the performance and reliability
of its cyber implementation with embedded sensing,
computation, and communication components. Fur-
ther, the embedded platform itself is often affected by
the physical environment, such as the impact of sur-
rounding temperature on computation and the effect
of environmental interference on wireless communi-
cation. These interdependencies make it significantly
more challenging to explore the design space during
synthesis.

o Different system objectives place conflicting require-
ments on design variables and parameters. For
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instance, shorter sampling and control periods usu-
ally lead to better sensing and control performance
[75], [76], but may be detrimental to schedula-
bility [77]-[81], extensibility, and fault tolerance.
Deciding these design variables requires quantitative
analysis and careful tradeoffs among various objec-
tives (metrics).

e The physical environment and human activities are
dynamic and hard to predict. Consequently, the work-
load, performance, and requirements for the cyber
and mechanical components could change signifi-
cantly during operation. These uncertainties present
great challenges in synthesis—for instance, only con-
sidering average case behavior may lead to unreliable
or unsafe scenarios, while only addressing worst case
behavior could lead to overconservative or even infea-
sible designs.

These challenges call for new synthesis methodologies
and tools that can 1) tackle the functional and architectural
complexity with accurate abstractions and efficient design
space exploration algorithms; 2) systematically codesign
the interdependent cyber and physical components while
quantitatively trading off conflicting design metrics; and
3) effectively address the system uncertainties with adapt-
able, robust, and extensible designs.

Next, we will present our codesign approaches for syn-
thesizing CPSs. These works address codesign in differ-
ent application domains with a common methodology as
follows.

e First, we identify the major factors that affect the
interplay among various system components and
design metrics, and formulate these factors as a set
of interface variables and constraints. The interface
variables could be concrete design variables such as
sampling periods, or more abstract quantities such as
sensing accuracy.

e Second, we analyze and formulate how various
design metrics (which may relate to different system
components) could be affected by the interface vari-
ables and the constraints defined on them.

e Finally, based on the formulation and analysis from
the steps above, we develop synthesis algorithms to
explore the values of interface variables and con-
straints as well as other design variables, with respect
to design metrics and requirements.

A. HVAC Controller and Sensing
Platform Codesign

In [82], we presented an approach to codesign a
heating, ventilation, and air conditioning (HVAC) control
algorithm and an embedded sensing platform in energy-
efficient buildings, as shown in Fig. 2. The codesign
is motivated by our observation that the performance
and energy cost of HVAC control is significantly affected
by the number, location and accuracy of temperature
Sensors.
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Codesign of HVAC control algorithm and embedded sensing

In the codesign process, we first define sensing accuracy
of each thermal zone, an abstract quantity that depends
on the sensor selection and deployment, as the interface
variables to capture the interplay between HVAC control
and sensing platform design. We then evaluate the control
performance (measured by a discomfort index) and energy
cost of six control algorithms, ranging from simple ON-
OFF control to robust model predictive control (MPC)
with extended or unscented Kalman filters, under different
levels of sensing accuracy. We leverage the collected data
from a building testbed to analyze the relation between the
abstract sensing accuracy variable of a thermal zone and
the concrete number, location, and accuracy of individual
sensors in that zone (which decide the sensing platform
cost). Finally, based on these analysis, we explore the
codesign of HVAC control algorithm and embedded sens-
ing platform to minimize the energy cost and monetary
cost while satisfying the constraints on building tenants’
comfort level.

For energy-efficient buildings, holistically addressing
heterogeneous components is not only important at design
stage but also highly beneficial during operation time.
In [83] and [84], coscheduling heterogeneous energy
demands (HVAC, electric vehicles charging) and supplies
(grid, renewable sources, battery storage) shows a reduc-
tion of 4% in energy cost and 15% in peak demand.
In [85], coscheduling HVAC control and datacenter opera-
tions in mixed-use buildings, with shared energy supplies
and cooling infrastructure, shows a reduction of 3%-17%
in energy cost and 3% in carbon footprint.

B. Control Performance and Schedulability
Codesign

In [81], we presented an algorithm to jointly address
control performance and schedulability in controller area
network (CAN)-based distributed real-time systems. In this
work, the interface variables between the control function-
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ality layer and the embedded implementation layer are
the activaton periods of tasks and messages. These are
concrete design variables being explored in our codesign
algorithm.

Intuitively, shorter periods for sensing and control tasks
often provide better performance, but increase system load
and may jeopardize schedulability (assuming the compu-
tation time stays at the same). To quantitatively address
this tradeoff, the codesign algorithm first approximates the
performance of each control loop in the system with a
piecewise-linear function of its sampling period and end-
to-end delay, and then optimizes the periods of tasks and
messages by exploring the linear partitions of the approx-
imated functions and solving a series of geometric pro-
gramming (GP) problems. The optimization process sets
system-level control performance as the objective function,
and uses schedulability of tasks and messages as design
constraints, along with latency deadlines of functional
paths.

C. Security, Control, and Schedulability Codesign

In [86], we presented a cross-layer codesign framework
that addresses the tradeoff between security and control
performance, while puaranteeing platform schedulability
for CPSs. We consider systems where multiple control
loops share a common embedded platform, with mes-
sages transmitted from sensors (vision sensors, global
positioning system, ultrasound, etc.) to controllers and
from controllers to actuators. Attackers may eavesdrop
on the message communication medium and further
reconstruct the system state. This would not only result
in a loss of privacy but also lead to other malicious

attacks. Security techniques such as message encryption
could be applied to mitigate risk, however they will
also introduce computation and communication overhead,
through the elongation of message transmission time,
the addition of decryption tasks on computation units,
and consequently the execution time increase of control
tasks on the same units due to resource contention. This
overhead will in turn have significant impact on sys-
tem schedulability and control performance, as detailed
in [86].

To quantitatively analyze the interplay among control,
security, and schedulability, we identify the sampling peri-
ods of control tasks and the selection of sensing messages
for encryption as the interface variables (Fig. 3). Similarly
as discussed above in [81], shorter sampling periods lead
to better control performance but worse schedulability,
and vice versa. Selecting more messages for encryption
enhances system security however also worsens schedula-
bility because of the added overhead, in which case the
sampling periods may have to be increased to help schedu-
lability (i.e., to ensure each sample can be processed within
its period) and thereby lead to worse control performance.

We mathematically formulated the relations between
design metrics (security, control performance, schedulabil-
ity) and interface variables (sampling periods, encryption
assignment to messages) in [86]. In particular, the system
security level is measured based on either observability
Gramian or Kalman filter, and takes into account which
messages are encrypted and to what extent. Based on
this formulation, a simulated-annealing-based algorithm
is developed to optimize security or control performance
under schedulability constraints.

Fig. 4 shows the tradeoff between security and control
performance when our approach is applied to an industrial
example in the automotive domain. The generated Pareto
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front provides a quantitative measurement of the tradeoff
and identifies a feasible region that is important for
making design decisions. For instance, an example feasible
region shown in the figure meets the requirements that the
normalized control performance should be no less than
0.3 and the system security level should be no less than
0.3. Without codesign, the designers might get a solution
that violates security requirement if they only optimize for
control performance [point (a) in the figure], or a solution
that violates performance requirement if they simply
choose to encrypt all messages [point (b)]. This example
shows the close interdependency among various design
metrics in CPSs and the importance to codesign them.

D. Timing Contracts for Codesign

Timing is a central element in CPS synthesis, affecting
both functional correctness and various design metrics.
Thus, timing variables and constraints are often identified
as the interface to drive the codesign. Two examples are
already introduced above—task and message activation
periods along with end-to-end delays are the interface
variables to drive the control performance and schedu-
lability codesign in [B81], while control sampling periods
are part of the interface variables to drive the codesign of
security, control performance, and schedulability in [86].
There could be many other types of timing variables and
formulations of timing constraints. Below, we present a
general methodology for timing-driven codesign and syn-
thesis based on exploration of timing contracts.

The paradigm of contract-based design provides the
general methodology of wusing contracts to reduce
design complexity and represent design refinement [24],
[87]1-[91]. However, the exploration of timing con-
tracts has typically been done manually or is limited to
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simulation-based approaches (as in our prior work [13]
introduced in Section II), and it has not been used suf-
ficiently to drive the synthesis process. Next, we use an
illustrating example to demonstrate our ideas in timing
contracts exploration for synthesis.

1) Multimetric Codesign With Timing Contracts: In Fig. 5,
at abstraction level N, a functional view (viewpoint) Cr,
and an architectural view 4 are defined to capture the
system’s functional behavior and architectural platform,
respectively. In the contract-based design paradigm, both
C'r and 4 can be defined as contracts that provide guar-
antees under assumptions, where guarantees and assump-
tions are specified as a set of assertions/constraints. In
addition to O and Ca, a timing contract/view Cr is
defined to capture the system’s timing behavior and con-
straints.!

The conjuncton of Cr and Cr (denoted as Cr M Cr,
with formal definition introduced in [24] and [87]) defines
the system's functional behavior under timing assump-
tions,/constraints defined in C'r. For instance, in the figure,
it defines the functional behavior when the end-to-end
(sensor-to-actuator) latency of a control loop including
components (subsystems) sy and Cyy is within L, and
when the control loop’s sampling period is Py (correspond-
ing to the activation period of sensing component Cyj,
where Tij enaqs; denotes the time associated with the end
of the ith execution of Cay, with other notatdons similarly
defined). This behavior relates directly to the system's
functional correctness, control performance, sensing accu-
racy, and other metrics related to functionality and timing.

1 may be further refined into functional and architectural timing
contracts to facilitate analysis and function-architecture cosimulation as
in [13].
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The conjunction of T4 and Cr (i.e., a4 N Cr) defines the
system's architectural behavior under tdiming constraints.
This may relate directly to metrics such as schedulability,
extensibility, and fault tolerance.

Often the timing constraints have opposite impact on
different metrics. As discussed above, shorter end-to-end
latencies and sampling periods (e.g., smaller values of L
and P in Fig. 5) usually lead to better performance but
worse schedulability. The goal in codesign with timing
contracts is to answer: how to systematically set the timing
constraints as contracts berween different views when con-
sidering multiple conflicting design metrics? For instance,
what values should L and Py be to provide the best control
performance while ensuring schedulability? What about to
ensure certain control performance level while providing
the best extensibility?

Our work introduced above [81], [86] is a first attempt
at addressing these questions. The general methodology
includes the following aspects.

+ Timing contracts formulation: Depending on system
characteristics and design focus, the constraints in
timing contracts could take wvarious mathematical
formalisms. Linear, quadratic, exponential, or other
functions can be used to form constraints on timing-
related variables. Logic operators (e.g., conjunction,
inclusive or exclusive disjunction, existential gqual-
ification) can be uwsed for defining logic relations,
particularly those related to resource contentions.
More generally, formalisms such as linear temporal
logic (LTL) [92], real-time logic (RTL) [93], signal
temporal logic (STL) [94], logic of constraints (LOC)
[95], and logical execution time (LET) [41] can be
used to capture the complex requirements on timing
variables and events. Leveraging these mathematical
formalisms, the key in defining contracts is to identify
the critical timing factors for codesign, and choose
the right abstraction levels and formalisms to cap-
ture them with constraints. For instance, sensitivity
analysis based on estimation and simulation can be
used to evaluate whether end-to-end latencies have
sipnificant impact on extensibility, and if so, which
path latencies are the most critical. Timing constraints
are defined at event level (e.g., timing order between
events) in [13] to drive simulation-based exploration,
and defined at task and component (functional block)
levels in [81], [86], and [96] to facilitate analyti-
cal synthesis algorithms. Different activation patters
(e.g., periodic, sporadic, or aperiodic) and timing
models (e.g., worst case, average case, or probabilistic
models) could be used to define events, components,
and tasks. Constraints could include hard, firm, or soft
deadlines, or weakly hard deadlines that are allowed
to be violated based on a defined pattern (e.g., at most
m violations in any k consecutive instance) [97].

+ Design metrics modeling and formulation: Once tim-
ing contracts are formulated, the next step is to derive
the relations between various design metrics and

the timing variables/constraints in the contracts. In
some cases, these relations can be captured in closed-
form formulations, such as the relation between secu-
rity level and the selection of sensing messages for
encryption in [86]. In other cases, approximated for-
mulations, simulation-based curve fitting, or direct
integration with simulators may have to be used,
such as the relation between control performance and
activation periods in [81].

In addition to control performance, security, and
schedulability, many other design metrics significantly
depend on system timing behavior and should be
addressed in codesign with timing contracts. For
instance, extensibility represents how much a system
may be changed without major redesign and reveri-
fication effort, which is imperative for large-volume
and long-lifetime CPSs such as automotive and avion-
ics systems. In our prior work [98]-[100], extensi-
bility metrics are defined to measure how much task
(or action) execution dme can be increased without
violating design constraints. These metrics depend
on timing constraints, architectural platform factors,
and synthesis choices, and should be codesigned with
other metrics. Another important metric is fault tol-
erance. In [101], a fault tolerance metric measures
the likelihood of soft errors being detected and cor-
rected through embedded error detection (EED) or
explicit output comparison (EOC) approaches without
violating timing constraints. The tradeoff between
fault tolerance and other metrics such as extensibility
and communication cost are evident in our recent
study [102], and should be addressed with timing
CONtracts.

Multimetric codesign algorithms: Once the timing
contracts and the design metrics are formulated, syn-
thesis algorithms need to be developed for explor-
ing timing constraints and other design variables
{e.g., task generation, allocation, and scheduling).
In general, the exploration can be formulated as a
constrained multiobjective optimization problem and
is often NP-hard. Randomized algorithms such as
simulated annealing can be applied in many cases,
however, the complexity usually makes it difficult to
obtain good (or even feasible) solutions for practical
Systems.

For some systems and metrics, the problem may
be formulated in an integrated formulation with
closed-form representations of all objectives and
constraints. In these cases, techniques such as
mathematical programming, greedy heuristic,
dynamic programming, or a combinational of them
could be applied to balance algorithm optimality
and complexity. For instance, mixed-integer linear
programming, geometric programming, and their
combination with heuristics are used in our prior
synthesis work [81], [98], [99], [103]-[107]. In
some cases, for complexity concern, it is necessary
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to develop separate exploration engines for timing
constraints, for task generation, allocation and
scheduling, for communication synthesis, and for
other design wvariables (e.g., CPU frequencies as
architectural variables, control algorithm parameters
as funcrional variables), and to efficiently iterate
among these engines for joint optimization.

2) Hierarchical Design Refinement With Timing Contracts:
The above timing contracts for codesigning multiple design
metrics can be regarded as “horizontal” contracts between
different views. There are also “vertical” timing contracts
that could be defined to facilitate the design refinement
across abstraction levels, which may be viewed as codesign
of multiple components (subsystems).

Using Fig. 5 as an example, at the lower abstraction
level N + 1 of the system, each functional component is
refined to lower level components. Functional view i
and Cjip are refined from components Cay and Cay at
level N. Correspondingly, architectural views %, and 7} ,
refine parts of the architectural platform to which Cay and
'y are mapped. For instance, task t; may be a virtual task
(i.e., not corresponding to a software task in the operating
system) at level N, and is refined to lower level tasks a4
and £ at level N + 1. Tasks ¢, and £y at level N are refined
to tasks t41 and txy at level N + 1, respectively.

During implementation, functional components are
mapped to the tasks in architectural views at the corre-
sponding level. For instance, in Fig. 5, Ca; is mapped to t3
at level N, and Cy; is mapped to t, and t5. At the lower
level N + 1, Caiy and Cazy are mapped to ta and tas,
respectively (both tasks are running on CPI/2). Caiy and
Cyzy are mapped to tu running on CPUL, and Cyay Is
mapped to s running on C'PU2, Note that both many-to-
one and one-to-many mapping between functional com-
ponents and architectural tasks are allowed for generality
and flexibility.

Timing contracts (4 and Chr are defined and should
be consistent with r, through constraints defined in
the wvertical timing contract Cpy-. For instance, in sys-
tems that are designed following the synchronous assump-
tion [96], [108], the end-to-end latency deadline from the
beginning of Cay; to the end of Cayy (denoted by Li)
should be within the activadon period P of Cay, to
ensure that each activation of C'; can be completed before
its next activation. Furthermore, the sum of the end-to-
end latency deadlines of % and 7}, denoted as I,
and L, respectively, should be within the entire control
path deadline L at level N. There are also timing con-
straints across architectural views at different abstraction
levels in Crv, and constraints between functional compo-
nents and architectural tasks in C%r and Cyr (e.g., set-
ﬂ.ﬂg Tsif.{ij = T‘!Ei.hcgin[lj (i} S}rﬂfhrﬂﬂize the execution
of Cuy and ta1). For simplicity, they are not shown
in Fig. 5.

The goal in hierarchical refinement with timing con-
tracts is to answer: How to assign timing “budget” as

1492 Proceepincs ofF THE IEEE | Vol. 106, No. @, Seprember 2018

contracts for each lower level component, which has sig-
nificant impact on the design of each subsystem and the
overall system quality? For instance, assuming L is set to
200 ms, we will need to address questions such as * if we
set Ly to 100 ms and L to 100 ms, can we find feasible
implementations/mappings for Cay and Caf?"; “What if
we set L, to 80 ms and L; to 120 ms, will it provide
better extensibility for the system?”; and so on. This is
challenging to address since often the timing budgets
(constraints) have to be decided before the corresponding
lower level components are designed (their design choices
depend on the timing budgets themselves and are often
carried out by different teams). Furthermore, in practical
systems, there are often multiple timing constrains for each
lower level component, and components that do not share
the same functional path may also impact each other if
they share resources on the architectural platform.

There are two important aspects in using timing con-
tracts to address these challenges.

« Vertical timing contracts formulation: The formula-
tion of vertical contracts may leverage the similar
mathematical formalisms as discussed above for hor-
izontal contracts. Furthermore, the vertical contracts
should be able to capture timing behavior and con-
straints across the hierarchical structure of systems.
For instance, in [96], we presented a formulation
called firing and execution timing automata (FETA),
which can capture the periodic timing behavior of
runnables at functional layer and of software tasks
at embedded platform layer. The hierarchical compo-
sifon of FETAs further corresponds to the mapping
of multiple runnables to a task. Having such unified
FETA formalism enables cross-layer timing analysis
during synthesis, and could be leveraged in formu-
lating vertical timing contracts.

« Hierarchical timing budgets exploration: Once the
vertical timing contracts are formulated, synthesis
algorithms are needed for exploring timing bud-
gets during design refinement. One direction is to
develop methodologies for a first estimation of the
timing complexity of components, which measures
how much impact a component may have on cer-
tain timing-related design metric (e.g., schedulability,
extensibility, fault tolerance). Different timing com-
plexity measurements may be required for different
metrics. As an example, for schedulability, the con-
cepts of local utilization and alpha ratio based on
FETA in [96] are shown to be effective in estimating
the impact of individual runnables on system schedu-
lability.

The estimations of timing complexity for components
can then be used to drive the timing budgets assipnment
and ultimately the design of components, such as the
software task generation and mapping for them. For exam-
ple, in Fig. 5, L; needs to be set to drive the task generation
and mapping for Cyy 5, Cuzy, and Cyay. To achieve effective
exploration, an iterative approach between the timing
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budgets assignment and the task generation and mapping
is needed.

E. Other Works

There are a number of other papers that address mul-
tiple system aspects and objectives in the synthesis of
CPSs. In [105], we addressed both security and timing
safety requirements in mapping software tasks onto CAN-
based automotive platforms. We used message authenti-
cation codes (MACs) to protect against masquerade and
replay attacks on CAN networks, and developed a mixed-
integer linear programming (MILP) formulation and a
greedy heuristic algorithm for exploring task allocation,
signal packing, MAC sharing, and priority assignment
while meeting security and timing constraints.

The work in [105] improves security for CAN-based sys-
tems by addressing it together with other design concerns
during the synthesis process. However, with limited band-
width and message size, it is still very challenging to apply
authentication mechanisms such as MACs on CAN net-
works. In [106], we further addressed security issues for
next-generation automotive buses that use time-division
multiple-access (TDMA) communication, such as time-
triggered Ethernet [109], FlexRay [110], or time-sensitive
networking [111]. We used an authentication mechanism
with time-delayed release of keys, and developed an algo-
rithm to jointly address security and timing requirements
by exploring task allocation, priority assignment, network
scheduling, and key-release interval length. Experiments
based on time-triggered Ethernet demonstrate that both
security and timing requirements can be met through the
joint formulation and synthesis—and may not be met if the
authentication mechanism is applied after task synthesis,
even with the much larger bandwidth and message size
than CAN. Following the work in [105] and [106], we
proposed a general methodology for addressing security
and other system objectives together during synthesis, and
apply it to a vehicle-to-vehicle (V2V) application [112].

In [96], we developed a model-based synthesis flow for
automotive software systems that follow the AUTOSAR
standard [113]. The synthesis flow optimizes the gener-
ation of AUTOSAR runnables from synchronous functional
models, the mapping of runnables onto software tasks, and
the allocation of tasks onto ECU cores. It introduces the
formalism of FETA to capture the worst case execution time
(WCET) of functional blocks, runnables, and tasks at each
activation, and then leverages the unified FETA formula-
tion to model system timing behavior and address timing
constraints throughout the entire synthesis process. Fur-
thermore, the synthesis flow considers a variety of software
engineering objectives (runnable modularity, reusability,
code size, memory cost) with timing behavior in a holistic
fashion. In particular, the flow focuses on trading off
modularity with schedulability during runnable synthesis,
and on minimizing memory cost under schedulability con-
straints during task synthesis. The results demonstrate the

importance of using a codesign methodology in synthe-
sis and addressing timing across the layers of functional
model, runnable, and software tasks. In [108], a similar
codesign formulation was developed for direct generation
of tasks from synchronous models, with respect to modu-
larity, reusability, code size, and latency.

For control applications, there are various efforts on
conducting controller design with the consideration of
platform impact (e.g., timing delay, packet dropping, and
scheduling policy) [75], [771-[80], [114]-[131]. In [132],
Roy et al. discussed the issues in traditional isolated
process of controller design and implementation plat-
form design, in particular the challenges in preserving
model-level semantics and safety properties during the
transformation of high-level controller models into imple-
mentations. They then provided a comprehensive review of
recent efforts in control-platform cosynthesis, in which the
control algorithms and platform parameters are designed
together.

IV. VERIFICATION AND VALIDATION

Verification and validation tools are essential in codesign-
ing CPSs. They ensure that system specification satisfies
user and mission requirements, and system implemen-
tation meets the specification. Similarly as for synthe-
sis, verification and validation face significant challenges
from increasing functional complexity, distributed and
networked architectural platform, heterogeneous system
components, and stringent requirements on various system
metrics. They not only have to guarantee functional cor-
rectness, but also need to ensure that requirements on non-
functional properties (e.g., performance, security, reliabil-
ity) are met. Moreover, properties that are often regarded
as nonfunctional in traditional computing systems, such as
timing behavior, may have significant impact on functional
correctness in CPSs. The close interaction between dis-
crete cyber components and continuous physical domain,
as well as the uncertainties from dynamic environment
and human activities, presents further challenges in CPS
verification and validation.

Next, we will first present our approach to tackle CPS
verification challenges, which combines platform-aware
functional verification with constrained platform synthesis
in a common framework. We will then introduce the
application of this methodology in a cross-layer codesign
and verification framework for connected vehicles.

A. Collaborative Functional Verification and
Platform Synthesis

In current practice, verification of system’s functionality
(abstracted through a functional model) is often conducted
without much consideration of the underlying architec-
tural platform. On the other hand, synthesis methods that
explore platform design choices are often oblivious of
the high-level functional requirements. Such disconnected

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1493



Zhu and Sangiovanni-Vincentelli: Codesign Methodologies and Tools for Cyber-Physical Systems

* Requirements satisfied, or
* Explanations of infeasible
constraints

Functional
Requirements

Platform-aware Functional
Verification

Verification
Loop ( . .
Constraints and Invariants
Interface
-
Synthesis
Loop ) )
Constrained Architectural
Platform Synthesis
- * Software architecture
Platform Demgn * Hardware design
Constraints » Communication mechanism

Fig. 6. Collaborative functional verification and platform synthesis
framework for CPSs.

approach may be feasible for traditional computing sys-
tems in which functional and nonfunctional properties
can be clearly separated. However, it is unsuitable for
many CPSs where nonfunctional quantities such as timing
and reliability have direct and complex impact on system
correctness, and using it could easily lead to infeasible
designs (i.e., either cannot be verified with respect to
system properties or cannot be implemented successfully)
or inferior designs. In [133], we proposed a collaborative
functional verification and platform synthesis framework
for integrating the two currently separated steps in the
design cycle, as shown in Fig. 6.

The idea in our approach is to divide the problem
of verifying CPSs into two collaborative subproblems:
1) functional verification under constraints and invariants
guaranteed by synthesis (e.g., verifying safety property
when assuming sensor-to-actuator delay is within certain
bound [Damn, Dmax]); and 2) software/hardware plat-
form synthesis under constraints and invariants specified
by verification (e.g., synthesizing software design while
meeting the same bound [Dwmin, Dmax] on sensor-to-
actuator-delay).

The constraints and invariants interface can be viewed
as a contract between functional verification and platform
synthesis. For instance, the above example of “sensor-
to-actuator delay is within bound [Dwmin, Dmax]” is in
fact an assume/guarantee contract, where the verification
process assumes the delay bound will be guaranteed in the
synthesis result. Thus, our framework integrates two essen-
tial aspects in CPS design and solve them systematically.
By formalizing and managing the exchange of constraints
and invariants through the verification-synthesis interface
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in coupled iterations, this approach could significantly
improve the efficiency of both verification and synthesis.
Next, we will introduce how we apply this methodology in
codesigning and verifying connected vehicle applications,
by analyzing the impact of communication delays and
message losses on functional properties.

B. Cross-Layer Design and Verification of
Connected Vehicles

Next-generation autonomous and semi-autonomous
vehicles will not only percept the environment with their
own sensors, but also communicate with surrounding
vehicles and infrastructures to improve vehicle safety and
transportation efficiency. The design, verification, and val-
idation of various V2X [i.e., vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I)] systems involve multiple
layers, from application functionality to vehicular com-
munication networks and to the software and hardware
of individual vehicles [134]. They are concerned with
stringent requirements on timing, safety, security, depend-
ability, cost, and resources across these layers.

The  underlying  sensing, computation, and
communication platform, within vehicles and between
them, fundamentally influences the correctness of
functional properties at the V2X application layer. For
instance, the time it takes a vehicle to broadcast its
position, velocity, and acceleration to nearby vehicles
has a significant impact on the size of safety zones in
which the vehicles can collaboratively perform collision
avoidance [133]. This timing is in turn influenced
by many platform decisions and factors, such as the
choice of sensors and their accuracies, the availability
and capability of computation resources, the in-vehicle
communication latencies over buses, the design of V2X
communication protocol and the environment disturbance
on such communication, and the overhead incurred by
added security measurements for V2X and in-vehicle
communications. Thus, the correctness of a functional
property at the application layer, such as “vehicles in a
platoon should always maintain a safe distance from one
another,” inherently depends on the design decisions and
execution behavior of the underlying platform.

Based on the above observation, we have been develop-
ing CONVINCE, a cross-layer modeling, exploration, and
validation framework for connected vehicles (Fig. 7). One
of the ideas of CONVINCE is to integrate the functional
verification of V2X and self-driving applications with plat-
form synthesis of inter-vehicle communication and intra-
vehicle (software and hardware) architecture, following
the general methodology introduced earlier in this section.
The CONVINCE framework includes mathematical models,
synthesis, verification and validation algorithms, and a het-
erogeneous simulator in a holistic environment. As shown
in Fig. 7, it explores a variety of design options with respect
to constraints and objectives across system layers, and it
takes into consideration of environment disturbance and
possible security attacks.
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Fig. 7. CONVINCE: Cross-layer modeling, exploration, and validation framework for next-generation connected vehicles.

In [134], we presented the preliminary design of
CONVINCE and a case study of the collaborative adaptive
cruise control (CACC) application, where every vehicle
communicates with its preceding vehicle and adaptively
maintains a safe distance. Through mathematical analysis
and simulations, the case study demonstrate the impact
of V2V communication delays on the performance of
CACC.

In [135], we applied CONVINCE to the design of cen-
tralized autonomous intersection management, a com-
plex V2X application that is significantly affected by the
underlying platform. In a centralized autonomous inter-
section, an intersection manager accepts requests from
approaching vehicles via V2I messages and schedules the
order for those vehicles to cross the intersection. Previous
papers in the literature assume perfect communication
between vehicles and infrastructures, and do not explic-
itly consider communication delays [136]-[140]. How-
ever, significant message delays (up to several hundred
milliseconds in the worst case) and losses could happen
in vehicular network under dense traffic [141]-[143],
and the situation could be even more severe when the
communication channels are under malicious jamming
or flooding attacks [134], [144]. In those cases, the

previous approaches that lack consideration of messages
delays and losses may lead to system deadlock or unsafe
situations.

To address the above issue, we presented a delay-
tolerant intersection management protocol in [135], and
applied CONVINCE for the modeling, simulation, and ver-
ification of the protocol. The framework is able to verify
that the protocol’s safety property is guaranteed under
any circumstance, and that its liveness and deadlock-free
properties are guaranteed if the maximum communication
delay is bounded and known. This bound should then be
used as a constraint for the synthesis of the underlying
communication and computation platform, i.e., as a con-
straint in the verification-synthesis interface in Fig. 6. Sim-
ulation results also demonstrate that 1) our protocol may
significantly improve the intersection efficiency in normal
situations (i.e., communication delay is within hundreds
of milliseconds); and 2) the protocol performance worsens
when communication delay increases, and thus it is impor-
tant to quantitatively analyze such impact and be able to
answer questions such as “for autonomous intersection to
outperform traffic lights, what bound should the commu-
nication delay satisfy and how to ensure such bound in
platform synthesis.”
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V. CONCLUSION AND FUTURE
DIRECTIONS

We discussed the importance and challenges of holis-
tically addressing modeling, synthesis, and verification
of CPSs. We presented emerging design methodologies,
algorithms, and tools for addressing CPS codesign, and
introduced their applications in domains such as auto-
motive systems, vehicular networks, and energy-efficient
buildings.

There are still many open challenges remaining in CPS
codesign. Below, we discuss some promising future direc-
tions for addressing them.

e Automated model generation and update: While
a number of model-based frameworks have been
proposed for capturing and analyzing CPSs (some
of which are introduced in Section II), developing
and maintaining those formal or semiformal models
remains quite challenging in practice. There is typi-
cally a steep learning curve for designers to get famil-
iar with the syntax and semantics of the frameworks,
and to effectively apply them in modeling complex
systems. This is especially the case in CPS code-
sign, as designers often need to model intrinsically
heterogeneous components with different semantics
and/or languages. The model development process is
usually time-consuming and error-prone, and main-
taining and updating the models throughout their
lifetime may take even more effort. Thus, developing
an automated or semiautomated process for model
generation and update is of great interest. We envi-
sion an environment where designers only need to
provide high-level informal descriptions of the sys-
tem (e.g., in English) and models are automatically
generated/updated based on those descriptions. To
realize this, advanced techniques such as natural lan-
guage processing (NLP) could be leveraged, as well
as intuitive graphical interfaces and comprehensive
design libraries. In addition, an interactive human-
tool interface, in which designers could incrementally
check, query, and modify the models, should facilitate
the model development/update process (an inter-
active interface should also facilitate synthesis and
verification as discussed below). Automated abstrac-
tion/rewriting techniques such as “lifting” are also
promising directions [145].

e Agile model abstraction and integration: CPS code-
sign requires integration of heterogeneous cyber and
physical components that are captured at various
levels of abstraction. Moreover, based on the specific
codesign problems, different abstraction levels may
be chosen for the same component. For instance, in
our approach to the codesign of an HVAC controller
and sensing platform for buildings [82], a simplified
resistor—capacitor (RC) network model from [146] is
used to capture the room thermal dynamics, and is
shown to be effective for facilitating the choices on
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different controllers and sensors. This model, how-
ever, may not be sufficiently accurate for design-
ing the controllers. Detailed thermal dynamics mod-
els (such as the ones built in EnergyPlus [147])
could provide the needed accuracy but are often
too complex for control design. Thus, models that
are between these two abstraction levels need to be
explored, through techniques such as model order
reduction [148], [149] and data-driven modeling
[150]-[155]. From the perspective of codesign tools,
it is important to facilitate agile exploration of dif-
ferent model abstractions, such as the exploration of
different thermal dynamic models in building design
and operation. This will require well-defined compo-
nent interfaces and system execution semantics that
can support “plug-and-play” of models at different
abstraction levels.

Comprehensive cross-layer cosynthesis: The design
of sensing, control, computation, and communica-
tion algorithms at the functional layer is closely
intertwined with the embedded software and hard-
ware design at the platform layers. The code-
sign/cosynthesis approaches presented in Section III
analyze and leverage such cross-layer interdependen-
cies to improve the overall system metrics such as per-
formance, safety, and security. While showing promis-
ing results, these approaches have only explored the
surface of cross-layer cosynthesis in CPSs. There is
great potential to further investigate the interactions
between CPS components across different system lay-
ers, discover and quantify the dependencies in their
design choices, and develop holistic formulations and
algorithms to cosynthesize them. For instance, HVAC
control algorithms may be codesigned with the sens-
ing platforms from scratch, beyond just being selected
from existing controllers as in [82]. Vision-based sens-
ing algorithms could be codesigned with the computa-
tion and communication platforms to enable efficient
real-time video processing, as we started exploring
in [156].

Efficient algorithms for exploring heterogeneous
design space: Compared with traditional embedded
systems, codesign problems in CPSs often involve a
more heterogeneous and complex design space. The
problem formulations could include a large number
of discrete and continuous design variables, and many
nonlinear or even nonconvex constraints. Thus, when
developing algorithms to explore such design space,
it is usually infeasible to directly apply mathematical
programming techniques such as linear programming
and geometric programming, and ineffective (too
slow or too far from the optimal solutions) to directly
use randomized methods such as simulated annealing
and genetic algorithms. New approaches need to be
developed for efficient exploration of the heteroge-
neous codesign space in CPSs. Techniques such as
approximation algorithms, greedy heuristics, parallel
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randomized search, and learning-based methods are
promising directions for tackling complexity. Further-
more, methods that can quickly estimate the bounds
of design metrics for partial solutions (i.e., when
only part of the design variables are decided) should
facilitate pruning the design space and accelerate the
exploration process.

Interactive synthesis and verification interface: CPS
design is often an iterative process, during which the
system specifications and constraints are continuously
refined and the tradeoffs among different metrics
are constantly carried out. It is therefore important
to develop an interactive interface between design-
ers and design tools (e.g., synthesis and verification
tools), to enable flexible additions and updates of
specifications/constraints, and to support designer
queries such as “is it possible to further improve
metric A?” and “what if constraint X is removed or
relaxed by quantity Y?” This interface will facilitate
a nimble design process, better leverage designers’
expertise, and ultimately improve design quality and
productivity. To realize such interface, new synthe-
sis and verification tools are needed to assess sys-
tem feasibility (with respect to both functional and
nonfunctional requirements) under an incomplete set
of constraints, estimate the bounds of design metrics
for all feasible implementations (if there are any),
identify design bottlenecks when there is no feasible

solution or certain metrics are not good enough,
and leverage previous synthesis/verification results
(rather than restarting from scratch) when new con-
straints are added or existing ones are modified.
Runtime coadaptation: While this paper mostly
focuses on tools and methods for design-time mod-
eling, synthesis, and verification of CPSs, it is equally
important to investigate and leverage the interdepen-
dencies between components for runtime adaptation
of CPSs, especially for those systems that operate
in uncertain environment and with changing mis-
sions. For example, when a robot faces adversarial
environment, it could holistically adapt its operation
across system layers by adopting more robust sensing
and control algorithms, applying stronger security
mechanisms in software and hardware, and possibly
reducing nonessential tasks to meet resource con-
straints. When an intelligent building detects emer-
gency situations (e.g., fire or breakout), it could adapt
to a different operation mode, with changes across
HVAC and lighting control algorithms, computation
and communication infrastructures, and sensing plat-
forms. Such level of coadaptation will require new
synthesis and verification methods that are efficient
and reliable enough for runtime usage. For instance,
fast online algorithms could be developed with the
help from offline synthesis/verification that consider
different operating scenarios.
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